A new formalization of a meta-game using the lambda calculus.

نویسندگان

  • Gen Masumoto
  • Takashi Ikegami
چکیده

This paper presents a new game system formalism. The system describes both strategies and a game master (who computes scores in a given game system) in terms of lambda-calculus. This formalism revisits the prisoner's dilemma game, to discuss how meta-strategies emerge in this classical game, even without repetition. We have also examined the evolution of meta-strategies in lambda formalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lambda-Game System: An Approach to a Meta-game

A new game system formalism is presented. The system describes both strategies and game master (who computes scores of a given game system) in terms of λ-calculus. A prisoner’s dilemma game is revisited with this formalism, to discuss how meta-strategies emerge in this classical game even without repetition. The present results show that Howard’s meta-game hierarchy is realizable in terms of λ-...

متن کامل

Formalizing the Meta-Theory of Q0 in Rogue-Sigma-Pi

Introduced by Peter Andrews in the 1960’s, Q0 is a classical higher-order logic based on simply-typed lambda calculus. This paper presents our work in progress on the formalizing of Q0 in a programming language, Rogue-Sigma-Pi (RSP), with the aim of validating its meta-theory. The main challenge of this project arises from the fact that while all logical derivations are carried out in much deta...

متن کامل

A Formalization of the Simply Typed Lambda Calculus in Coq

In this paper we present a formalization of the simply typed lambda calculus with constants and with typing à la Church. It has been accomplished using the theorem prover Coq. The formalization includes, among other results, definitions of typed terms over arbitrary many-sorted signature, a substitution operating on typing judgements, an equivalence relation generalizing the concept of α-conver...

متن کامل

Coding Binding and Substitution Explicitly in Isabelle

Logical frameworks provide powerful methods of encoding object-logical binding and substitution using meta-logical λ-abstraction and application. However, there are some cases in which these methods are not general enough: in such cases object-logical binding and substitution must be explicitly coded. McKinna and Pollack [MP93] give a novel formalization of binding, where they use it principall...

متن کامل

A Formalization of Strong Normalization for Simply-Typed Lambda-Calculus and System F

We formalize in the logical framework ATS/LF a proof based on Tait’s method that establishes the simply-typed lambda-calculus being strongly normalizing. In this formalization, we employ higher-order abstract syntax to encode lambda-terms and an inductive datatype to encode the reducibility predicate in Tait’s method. The resulting proof is particularly simple and clean when compared to previou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 2005